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Abstract: Algebraic ray traces of various configurations of Spatial Heterodyne Spectrometers 9 
(SHS) are developed to derive general, approximate, formulas for resolving power, fringe 10 
localization plane and admissible off-axis angle for each configuration. Michelson, all-11 
reflective and field widened configurations are considered separately. The derived formulas 12 
for each configuration are tested against exact numerical ray traces using optical design 13 
software and in general found to be in good agreement.  14 
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1.  Introduction  17 

Spatial Heterodyne Spectroscopy (SHS) is a technique for interference spectroscopy that 18 
offers many advantages for high spectral resolution measurements of faint, diffuse sources. 19 
When compared to conventional spectrometers SHS instruments can be made more compact, 20 
more sensitive, have relaxed alignment and fabrication tolerances and reduced telemetry 21 
requirements. As a result, many SHS instruments have been developed or proposed for 22 
remote sensing applications from space or ground-based platforms [1-6]. A close relative of 23 
SHS is Doppler Asymmetric Spatial Heterodyne (DASH) has been developed to measure 24 
atmospheric winds using isolated emission lines [7-9]. Although not considered directly here, 25 
DASH instruments can be considered as SHS configurations with an offset aperture so the 26 
analysis presented here pertains to DASH as well.  SHS is a multiplex technique where 27 
spectral information is obtained by a Fourier transform of an interferogram. As a result, 28 
multiplex noise must be considered when evaluating the performance of the technique, 29 
particularly on dense spectra. The fundamental characteristic of all SHS instruments is an 30 
interferometer that produces, a wavenumber-dependent spatially-heterodyned two-beam 31 
Fizeau fringe pattern that is recorded by a position-sensitive detector. The system throughput 32 
is characteristic of an interferometer as the change in fringe frequency is second order or 33 
higher with off axis angle in the interferometer. This results in the well-known throughput 34 
advantage of interferometers compared with slit spectrometers. This paper analyzes a variety 35 
of SHS configurations from a fundamental ray tracing perspective with the objective of 36 
obtaining expressions for the resolving power, fringe localization plane, and maximum 37 
allowable off-axis angle within the interferometer for each configuration. We begin with the 38 
basic Michelson-based configuration, continue to all-reflective, and finish with an analysis of 39 
field widened systems. For each configuration the approximate derived analytic expressions 40 
are checked against exact numerical ray tracing of specific examples of that configuration.  41 

2. Michelson configuration: amplitude splitting beamsplitter 42 

 43 
The basic Spatial Heterodyne Spectrometer consists of a Michelson interferometer with the 44 
return mirrors replaced by diffraction gratings and an imaging detector to record the static 45 
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fringe pattern. Figure 1 shows the configuration with an input aperture, a collimating lens, the 46 
interferometer elements (beamsplitter and gratings) and the exit optics required to image the 47 
fringe localization plane onto the detector. The input aperture, located at the focal plane of 48 
lens L1, determines the range of angles incident on the gratings. The solid angle subtended by 49 
the aperture from lens L1 multiplied by the grating area determines the etendue of the system. 50 
The tilt angle θi for each grating is chosen so that rays incident on the gratings parallel to the 51 
optical axis of a selected wavenumber will retro-reflect. This wavenumber, σo, satisfies the 52 
Littrow condition for each grating;  m1,2=2σoa1,2 sin(θ1,2) where ai is the groove spacing and mi 53 
is the order number of each grating.   If the gratings are positioned along the optical axis 54 
equidistant from the beamsplitter zero path difference is along this axis. When identical 55 
gratings are positioned the same distance from the beamsplitter and used in equal and 56 
opposite order (θ2 = -θ1 in figure 1 and the formalism below), a two-sided interferogram is 57 
produced with the fringes localized on a plane perpendicular to the optical axis.  The 58 
resolving power, solid angle field-of-view and passband of the symmetric configuration have 59 
been shown to be [10]: 60 

𝑅 =
𝜎

𝛿𝜎
= 4𝑊𝜎 sin 𝜃        (1) 61 

 62 

Fig 1. Basic SHS system. Diffraction gratings G1 and G2 terminate the arms of a Michelson 63 
interferometer. Aperture A at the focal plane of collimating lens L1 determines the angles 64 
incident on the gratings. The fringes are localized on a plane near the gratings that is imaged 65 
by lenses L2 and L3 on a position-sensitive detector (CCD). Field widening prisms P1 and P2 66 
(not present in the basic Michelson configuration) are introduced in section 4.  67 



where W is the width of the gratings imaged onto the detector,  is the wavenumber (1/), 68 
 is the minimum resolvable wavenumber, and  is the Littrow angle of the gratings.  The 69 
maximum solid angle field of view  at the gratings is  70 

Ω =  
2𝜋

𝑅
          (2) 71 

 and 72 

Δ𝜎𝑚𝑎𝑥 =
𝑁𝛿𝜎

2
         (3) 73 

where max is the passband and N is the number of detector pixels sampling the 74 
interferogram. The solid angle field of view is characteristic of Fabry-Perot and Michelson 75 
FTS interferometers operating at the same resolving power.   76 

2.1 Ray tracing the basic configuration 77 
 78 
Figure 2 shows the gratings from Figure 1 unfolded as they appear from the exit of the 79 
interferometer along with the coordinates that will be used for algebraic ray tracing. For 80 
generality, gratings with two different groove densities (Littrow angles) are illustrated. Point 81 
O is the origin of the coordinate system (y is out of the plane of the figure) and the point 82 
where gratings G1 and G2 appear to coincide. Grating G1 is inclined at angle 1 to the x axis 83 
given by the Littrow condition, sin1 = m/(2a1o) where m is the order number, a1 is the 84 
grating groove spacing and o is the Littrow wavenumber. The ray shown in bold is launched 85 
from point A at angles  (shown in the figure) and  (out of the figure plane measured 86 
perpendicular to the figure) perpendicular to plane P. This ray strikes grating G1 at point B, 87 
diffracts from the grating at angles ’ and ’ and exits the interferometer through point C. For 88 
illustrative purposes a second ray is shown launched at the same angles from plane P but 89 
reflecting off grating G2 (which in general has a different Littrow angle than G1), exiting 90 
through point C. At the input to the interferometer these two rays are in a collimated beam 91 
(see Figure 1). They are therefore in phase on plane P perpendicular to the rays. The 92 
interference at point C may be calculated by determining the optical path (OP) for both rays 93 
between plane P and point C as a function of the output position x, y, and z and input angles  94 
and . These variables are chosen as the independent variables as they are the same for the 95 
two interferometer arms. Output angles ’ and ’ are considered dependent variables because 96 
they are in general different for the two arms.  The optical path difference (OPD) and 97 
therefore the phase difference at point C can then be calculated by a difference of the optical 98 
paths (OPD = OP2 – OP1). Once the OPD is calculated the interference pattern for 99 
monochromatic light is given by: 100 
 101 
𝐼(𝑥, 𝑦, 𝑧) =  𝐼0{1 + cos[2𝜋𝜎𝑂𝑃𝐷(𝑥, 𝑦, 𝑧)]}      (4) 102 
 103 
Where Io is the incident intensity and  is the wavenumber of light which may or may not be 104 
equal to the Littrow wavenumber o.    105 

 106 



 107 

Fig 2.  Basic Michelson configuration as viewed from the exit of the interferometer.  The 108 
gratings G1 and G2 appear superimposed. For clarity, angles  measured perpendicular to the 109 
x-z plane are not shown. 110 

The optical path for ray ABC can be found by combining the geometric paths AB + BC plus 111 
the additional path introduced by the diffraction grating. The grating path is assumed zero at 112 
point O where the images of the gratings coincide. At point B the grating optical path is given 113 
by: 114 

𝑂𝑃𝑔 = −
𝑚(𝑂𝐵)

𝑎𝜎
= −2(𝑂𝐵)

𝜎0

𝜎
sin 𝜃 =  −2𝑥𝑔

𝜎0

𝜎
tan 𝜃    (5) 115 

Where OB is the distance along the grating from O to B in the plane of the figure, m is the order 116 
number,  is the wavenumber and xg is the x coordinate of the ray at point B. The paths BC and 117 
AB can be determined from the following equations: 118 

𝐵𝐶 =
(𝑧+𝑥 tan 𝜃) cos 𝜃

cos(𝜃+𝛽′) cos 𝜙
        (6) 119 

 120 
𝑥𝑔 = 𝑥 − 𝐵𝐶 cos 𝜙′ sin 𝛽′                     (7) 121 
𝑦𝑔 = 𝑦 − 𝐵𝐶 sin 𝜙′            (8) 122 
𝑧𝑔 = 𝑧 − 𝐵𝐶 cos 𝜙′ cos 𝛽′        (9) 123 

𝐴𝐵 =  𝑥𝑔 sin 𝛽 cos 𝜙 + 𝑦𝑔 sin 𝜙 − 𝑧𝑔 cos 𝛽 cos 𝜙       (10) 124 

Where, x, y, z are the coordinates of the ray at point C and xg, yg, zg are the coordinates at point 125 
B.    126 

The relationship between the primed and unprimed angles is given by the grating equation: 127 
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2𝜎0 sin 𝜃 = 𝜎 cos 𝜙 (sin(𝜃 + 𝛽) + sin(𝜃 − 𝛽′))      (11) 128 
𝜙′ = 𝜙          (12) 129 

Using equations 11 and 12 to eliminate primed variables and expanding equations 5-10 to 130 
second order in , , and    - o, the optical path OP = AB + BC + OPg is:    131 

𝑂𝑃 = 𝑧 + 𝑥𝛽 + 𝑦𝜙 + 2𝑥
Δ𝜎

𝜎
tan 𝜃 − 2𝛽

Δ𝜎

𝜎
tan 𝜃 (𝑧 + 𝑥 tan 𝜃) − 2 (

Δ𝜎

𝜎
)

2
(𝑧 +132 

𝑥 tan 𝜃) tan2 𝜃 − 𝛽2 (
𝑧

2
+ 𝑥 tan 𝜃) − 𝜙2 (

𝑧

2
+ 𝑥 tan 𝜃)     (13) 133 

To determine the interference at point C produced by an interferometer with two gratings with 134 
Littrow angles 1 and 2 at wavenumber 0  the appropriate Littrow angle is substituted into 135 
equation 13 and the difference OPD = OP(2) -  OP(1) is taken: 136 

𝑂𝑃𝐷 = 2𝑥
Δ𝜎

𝜎
(tan 𝜃2 − tan 𝜃1) − 2𝛽

Δ𝜎

𝜎
{𝑥[tan2 𝜃2 − tan2 𝜃1] + 𝑧[tan 𝜃2 − tan 𝜃1]} −137 

𝑥(𝛽2 + 𝜙2)(tan 𝜃2 − tan 𝜃1) − 2 (
Δ𝜎

𝜎
)

2
{𝑥[tan3 𝜃2 − tan3 𝜃1] + 𝑧[tan2 𝜃2 − tan2 𝜃1]} (14) 138 

 139 

The first term in equation 14 is proportional to  and is the term that generates the desired 140 
Fizeau fringes. If this were the only term in the OPD the fringe frequency for a given 141 
wavenumber (fx = (OPD)/ x) would be linear in  and independent of input angle. The 142 
second and third terms in equation 14 shift the fringe frequency with off axis angle as they 143 
depend on β or . The second term is linear in  and can be thought of as a focus error. It can 144 
be made zero by setting zLoc = -x(tan2 + tan1) which identifies the fringe localization plane. 145 
This plane is where the fringes have the highest contrast and is the plane that should be imaged 146 
onto the detector by the optics following the interferometer, notionally L2 and L3 in Figure 1. 147 
Note that for general 1 and 2 the localization plane not perpendicular to the optical axis of the 148 
interferometer (zLoc is a function of x). Substituting the fringe localization plane condition for 149 
z into equation 14 gives: 150 

𝑂𝑃𝐷 =  2𝑥
Δ𝜎

𝜎
(tan 𝜃2 − tan 𝜃1) −  𝑥(𝛽2 + 𝜙2)(tan 𝜃2 − tan 𝜃1) −151 

2𝑥 (
Δ𝜎

𝜎
)

2

tan 𝜃2 tan 𝜃1 (tan 𝜃2 − tan 𝜃1)      (15) 152 

The last term in equation 15 does not depend on input angle and is simply a quadratic shift in 153 
fringe frequency with wavenumber. At high spectral resolution over a narrow passband this 154 
term is negligible (/ is small) and in any case its effect can be determined by wavelength 155 
calibration of the instrument.   Ignoring this term, the resolving power of the instrument can be 156 
calculated by finding the wavenumber difference for which the number of fringes across the 157 
entire grating image changes by one for on-axis rays. Assuming a two-sided interferogram with 158 
the grating crossing point (point O in figure 2) in the center of the grating image, and setting 159 
= /R  as the minimum resolvable wavenumber, the number of fringes between x=0 and 160 
x= xmax for one-half additional fringe across one-half of the grating aperture is  161 

1

2
= 2𝑥𝑚𝑎𝑥

𝜎

𝑅
(tan 𝜃2 − tan 𝜃1)   or        (16) 162 

𝑅 = 4𝑥𝑚𝑎𝑥𝜎(tan 𝜃2 − tan 𝜃1)               (17) 163 

The maximum allowable off-axis angles can be determined from the second term in equation 164 
15. Allowing for a fringe shift with off-axis angle of one fringe over the grating image 165 
(consistent with a shift of no more than spectral resolution element) gives 166 
1

2
= 𝜎𝑥𝑚𝑎𝑥(𝛽2 + 𝜙2)𝑚𝑎𝑥(tan 𝜃2 − tan 𝜃1)       (18) 167 

 Solving for solid angle and combining with equation 17 gives 168 

Ω ≅ 𝜋(𝛽2 + 𝜙2)𝑚𝑎𝑥 =
2𝜋

𝑅
        (19) 169 



Which confirms the result shown in equation 2.   170 

As shown earlier, the localization plane with highest fringe contrast is given by zLoc =-x(tan2 171 
+ tan1) which for arbitrary 1 and 2 is not perpendicular to the optical axis as z is a function 172 
of x. The most common implementation of the Michelson configuration is when identical 173 
gratings are used in equal and opposite order. In this case 2=-1 and the localization plane 174 
is along the x axis at z =0 (no tilt with respect to the optical axis).  The resolving power given 175 
in equation 17 then reduces to 176 

 177 
𝑅 = 8𝑥𝑚𝑎𝑥𝜎 tan 𝜃 = 4𝑊𝜎 sin 𝜃        (20) 178 

where W = 2xmax/cos  is the width of the grating. Using the grating equation at the Littrow 179 
angle (m/a = 2sin) the resolving power is simply equal to the total number of grooves (both 180 
gratings) imaged. This confirms the result that the SHS achieves the theoretical resolution of 181 
the diffraction gratings while equation 19 indicates a throughput characteristic of an 182 
interferometer.  183 

2.2 Comparison with exact ray trace 184 

To verify the above approximate algebraic results for the Michelson configuration, exact 185 
numerical ray tracing using ZEMAX was performed for specific instrument parameters. The 186 
ZEMAX model assumes a plane wave incident into the interferometer with the two arms 187 
modeled as separate configurations. At the output interference of the exiting plane waves 188 
determines a fringe pattern on an arbitrary plane. The model is run multiple times varying the 189 
input angles of the plane waves to determine how the fringe frequency and phase changes with 190 
off-axis angle. The resolving power was determined by finding the wavenumber change (Δσ) 191 
that results in adding (or subtracting) ½ fringe at the edge of the aperture (cf. equations 16-19). 192 
The localization plane was determined by finding the distance z along the optical axis for which 193 
the point at the center of the aperture (x=0) has a path difference of zero for all input angles. 194 
Away from this plane the fringe patterns corresponding to different input angles are not in phase 195 
(cf. second term in equation 14) and the fringes summed over all angles are therefore out of 196 
focus. The instrument modeled for comparison has identical gratings in equal and opposite 197 
order corresponding to 2=-1 in the above analytic expressions. The instrument parameters 198 
chosen for the model are shown at the top of Table 1. The output parameters of resolving power, 199 
fringe localization plane and the maximum angles max and max predicted by the above 200 
equations are compared to the values calculated using the ZEMAX model. The localization 201 
plane is measured from the origin of the coordinate system shown in Figure 2 and is 202 
perpendicular to the z axis. The agreement between the approximate analytic expressions and 203 
the exact ray trace indicates that expansions to second order in off-axis angles used in the 204 
analytic expressions are sufficient to describe the properties of the instrument.  205 

 206 
Table 1. Analytic vs. ray trace results for the Michelson configuration 207 

Parameters σ0 (cm-1) 1/a (l/mm) 2=-1 (deg) xmax (mm) 

Input 18,181.8 1000 15.96 10 

Output R=σ/δσ zLoc (mm) max (rad) max (rad) 

Analytic 41,600 0 0.00693 0.00693 

ZEMAX 41,600 0 0.00693 0.00693 

 208 



Figure 3 shows the change in OPD with off-axis angle, expressed as a change in number of 209 
fringes at x = xmax, predicted by the second term in equation 15 and indicated by the ZEMAX 210 
model for the instrument parameters in Table 1. The analytic expression prediction is the solid 211 
line while the ZEMAX model results are the asterisks. The dotted lines indicate the maximum 212 
off-axis angle for which the number of fringes changes by ½ at the edge of the grating (cf. with 213 
Table 1).  214 

 215 

 216 

Fig 3. Shift in OPD with off-axis angle at x=xmax predicted by equation 15 (solid line) and the 217 
ZEMAX model (asterisks). Note that only the dependence on  is shown in the plot as the  218 
dependence is identical. See text for additional details. 219 

 220 

3. Instruments with grating beamsplitters 221 

 222 
For spectral regions where transmitting optics are not available SHS interferometers can be 223 
designed in all-reflection configurations using diffraction gratings as beam splitters and 224 
combiners. Figure 4 shows three different configurations, each of which have the input and 225 
output beams normally incident on the gratings and use equal and opposite diffraction orders 226 
to split and recombine the beams. The configurations shown in figure 4A and B both use the 227 
same grating for beamsplitting and combining. The input and output beams for these 228 
configurations can be separated by using either a split aperture at the focal plane of the 229 
collimating lens or roof mirror(s) in the arm(s) to displace the beam into the plane of the page. 230 
From a ray tracing perspective configurations 4A and 4B are identical, however, 231 
configuration 4B has the advantage of being a common path system where light from both 232 
arms reflects from each interferometer element, resulting in greater stability. Configuration 233 
4C employs separate gratings for beamsplitting and combining.  It has the advantage that by 234 
proper choice of gratings it can produce fringes localized on a plane after the beam combining 235 
grating thus eliminating the need for the exit optics to reimage the fringes on the detector. 236 
(lenses L2 and L3 shown in Figure 1).   237 

 238 



 239 

Fig. 4 Three all-reflection SHS configurations.  240 

3.1 Analytic ray trace of the all-reflection configurations 241 

 242 
Figure 5 shows the coordinates used to trace a ray through one arm of the all-reflective 243 
configurations. The figure is drawn without the plane reflections and with the gratings 244 
oriented so that the optical path at the edge of the interferometer (maximum x) has the same 245 
sign for both gratings. This is the case for configuration 4A and 4B. For the configuration 4C 246 
the path introduced by the gratings have opposite sign which will be treated in the formalism 247 
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by changing the sign of ’ in the derived equations. By appropriate choice of value and sign 248 

for  and ’ all three of the configurations shown in Figure 4 will be analyzed in terms of 249 

independent variables x, y, and z (output coordinates) and ,  (input angles), similar to the 250 

approach in section 2 for the Michelson configuration. The out-of-plane angle , not shown 251 
on Figure 5, is measured perpendicular to the x, z plane.   252 

 253 

Fig. 5. Unfolded representation of the all-reflection configurations. The variables used in the 254 
formalism are indicated on the figure.  255 

The optical path from point A on plane P at the input to point C at the output of the 256 
interferometer is given by: 257 

𝑂𝑃 = 𝐴𝐵 + 𝑂𝑃𝐺 + 𝐵𝐵′ + 𝑂𝑃𝐺′ + 𝐵′𝐶      (21) 258 

where OPG and OPG’ are the optical paths introduced by gratings G and G’ and the other 259 
terms are the line segments indicated on figure 5. Assuming O and O’ are the centers of 260 
symmetry of the input and output gratings (see figure 4), the optical path at the gratings for 261 
each arm is the same for a ray traveling between O and O’. For points away from O and O’, 262 
the optical paths introduced by the gratings are: 263 
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 𝑂𝑃𝐺 = 𝑂𝐵
𝜎0

𝜎
sin 𝜃 and         (22) 264 

𝑂𝑃𝐺′ = 𝑂𝐵′
𝜎0

𝜎
sin 𝜃′          (23) 265 

where o is the alignment wavenumber  (m/a = o sin  for grating G with groove spacing a 266 

and m/a’ = o sin ’ for grating G’ with groove spacing a’) and OB and OB’ are distances 267 

measured in the plane of the figure along the gratings.  The relationships between , ’, and 268 

’’ indicated in the figure are determined by the grating equations:   269 

𝜎0 sin 𝜃 = 𝜎 cos 𝜙 (− sin 𝛽 + sin(𝜃 + 𝛽′))       (24) 270 
𝜎0 sin 𝜃′ = 𝜎 cos 𝜙 (sin 𝛽′′ + sin(𝜃′ − 𝛽′))       (25) 271 

𝜙′′ = 𝜙′ = 𝜙                      (26) 272 

Following the analysis in section 2, the OPD can be obtained from the difference in optical 273 
paths between the rays starting on plane P and traversing the two interferometer arms to point 274 
C.   275 

𝑂𝑃𝐷 =  𝑂𝑃(−𝜃, −𝜃′) − 𝑂𝑃(𝜃, 𝜃′)        (27) 276 

Using geometry to determine the length of line segments AB, BB’ and B’C and expanding the 277 

resulting OPD to second order in , , and  gives: 278 

𝑂𝑃𝐷 = 2𝑥
Δ𝜎

𝜎
cos 𝜃′ (tan 𝜃′ + tan 𝜃) − 𝛽2𝑥

cos 𝜃′

cos2 𝜃
(tan 𝜃′ + tan 𝜃) − 𝜙2𝑥 cos 𝜃′ (tan 𝜃′ +279 

tan 𝜃) − 2
𝛽

cos 𝜃

Δ𝜎

𝜎
[𝑑 tan 𝜃 + 𝑧 cos2 𝜃′ (tan 𝜃′ + tan 𝜃)] − (

Δ𝜎

𝜎
)

2

𝑥 tan2 𝜃 cos 𝜃′ (tan 𝜃′ +280 

tan 𝜃)          (28) 281 

The term linear in  represents the focus and can be set to zero by choosing 282 

𝑧𝐿𝑜𝑐 = −
𝑑

cos2 𝜃′

1

(1+tan 𝜃′/ tan 𝜃)
       (29) 283 

Note that zLoc does not depend on x which means that the localization plane is perpendicular 284 
to the optical axis of the instrument. Substituting equation 29 for z in equation 28, ignoring 285 

the term quadratic in / and following the analysis in section 2, the resolving power and 286 
maximum off axis angles for the general two-grating system are given by: 287 

𝑅 = 4𝑥𝑚𝑎𝑥𝜎 cos 𝜃′ (tan 𝜃′ + tan 𝜃) = 2𝑊′𝜎 cos 𝜃′ (tan 𝜃′ + tan 𝜃)   (30) 288 

Where W’ is the width of the beam at the fringe localization plane.   289 

𝛽𝑚𝑎𝑥
2 = 2 cos2 𝜃 /𝑅  and   𝜙𝑚𝑎𝑥

2 = 2/𝑅       (31) 290 

A comparison of equation 19 calculated for the Michelson configuration shows that the 291 

maximum  is the unchanged while the maximum  angle is cos  times smaller for the all-292 
reflection configurations. This decrease is due to the anamorphic angular magnification in the 293 
plane of Figure 5 introduced by diffraction grating G used at normal incidence and results in 294 



an elliptical rather than circular pattern of angles at the input aperture. It follows that in 295 
practice an elliptical aperture input aperture (A in Figure 1) should be used for these 296 
configurations.  297 

With the formalism above, the properties of the three configurations shown in Figure 4 can be 298 

determined.  For configurations 4A and 4B ’ =  and the expression for the resolving power 299 

reduces to 4W sin. Which is the same as for the Michelson configuration, however, here W 300 
is the width of fringe image at the fringe localization plane rather than the grating width.  301 

For ’ =  equation 29 reduces to zloc = -d/(2 cos2 ). The negative sign indicates that the 302 
fringes are localized inside the interferometer. Imaging this virtual localization plane requires 303 
at least one focusing element between the interferometer and the detector to re-image the 304 
fringes onto the detector.    305 

In configuration 4C ’ and  have opposite sign leading to a resolving power  306 

𝑅 = 2𝑊′𝜎 cos 𝜃′ (tan 𝜃′ − tan 𝜃)        (32) 307 

If | ’ | > |   | then tan ’/tan  < -1 and it is clear from equation 29 that the fringes are 308 
localized at positive values of z.  This places the fringe localization plane after the beam 309 
combining grating which makes the fringes real and eliminates the need for reimaging the 310 
fringes with exit optics.   311 

3.2 Verification of the analytic expressions for the all-reflection configurations 312 

Following the analysis in Section 2, a ZEMAX model for the all-reflection configurations 313 
have been constructed and used to verify the formulas derived for them. As indicated earlier 314 
configurations 4A and 4B are identical from a ray tracing perspective so they are treated 315 
together while configuration 4C, using two different gratings is modeled separately. Table 2 316 
shows in inputs for the configurations and the resolving power, fringe localization plane and 317 
maximum allowable off-axis angle for the analytic expressions and ZEMAX model. The 318 
fringe localization plane distance zLoc is measured from the plane of the second grating. 319 
Negative distance indicates behind the grating (virtual fringes) while positive indicates after 320 
the grating (real fringes).   321 

As for the Michelson configuration the comparison between the approximate analytic ray 322 
trace analysis and the exact ZEMAX model indicates the validity of the analytic method.  323 

  324 



Table 2.  Comparison of the analytic method and ZEMAX ray trace. 325 

Parameter σ0 (cm-1) 
1/a 

(l/mm) 

1/a’ 

(l/mm) 
θ (deg) θ’ (deg) 

xmax 

(mm) 
d (mm) 

Conf 

4A,4B 
20,000 1000 1000 30 30 10 80 

Conf 4C 20,000 500 1000 -14.48 30 10 133.81 

Output  R=σ/δσ zLoc (mm) max (rad) max (rad) 

Conf 

4A,4B 

Analytic 80,000 -53.33 0.00433 0.00500 

ZEMAX 80,000 -53.33 0.00433 0.00500 

Conf 4C 

Analytic 21,100 +144.34 0.00921 0.00951 

ZEMAX 21,100 +144.34 0.00921 0.00951 

 326 

Figure 6 shows a plot of the change in OPD (fringes) with off-axis angles at x=xmax. The left 327 
plot is for configurations 4A and 4B. The right plot is for configuration 4C. Solid black 328 

indicates the analytic OPD shift with  while dashed black shows the analytic trend with . 329 

Results of the ZEMAX model are shown with asterisks indicating the change with  and 330 

squares the trend with . The dotted lines indicate the maximum angles (max and max cf. 331 
table 2) for a fringe shift of ½ at the edge of the fringe image (x=xmax), consistent with a 332 
smearing of one spectral resolution element.  333 

 334 

 335 

Fig 6. Plot of OPD change with off axis-angles for the all-reflection configurations. 336 

4. Field widening with fixed prisms 337 

The field of view limits for the Michelson configuration imposed by equation 19 can be 338 
exceeded by inserting fixed field widening prisms in each arm of the interferometer 339 
schematically shown as P1 and P2 in figure 1. The prism angle is chosen so that from a 340 



geometrical optics point of view the gratings appear coincident, much like a Michelson 341 
interferometer at zero path difference. The maximum field of view, limited by prism 342 
aberrations, can be much larger than a system without field widening prisms resulting in 343 
larger system etendue and instrument sensitivity. In the following sections we describe an 344 
analysis of the Michelson configuration with identical gratings used in equal but opposite 345 

order (2 = -1 in section 2) but with the addition of field widening prisms. The expansion of 346 
the OPD with off axis angle is more complex in these cases and has been accomplished with 347 
the help of the symbolic mathematics software Maple. The detailed design of field widened 348 
interferometers is likely best accomplished numerically using optical design software that 349 
performs an exact ray trace of each configuration. The goal of the algebraic analysis provided 350 
here is to understand the limiting prism aberrations and provide starting points for 351 
optimization using a numeric ray trace. As for the sections 2 and 3 above, each section 352 
concludes with a comparison of the approximate analytic equations with an exact numerical 353 
ray trace.  354 

Section 4.1 considers the case where the prisms are used at the angle of minimum deviation. 355 
In this geometry an axial ray enters and leaves the prism at identical angles and the total ray 356 
deviation is minimum. At minimum deviation the prism apex angle and the angle of incidence 357 
of the optical axis on the prism are coupled so adding the prism introduces only one 358 
additional independent variable to the analysis. In section 4.2 we consider the general case 359 
where the prism is used at an arbitrary angle of incidence resulting in two additional 360 
independent variables, the prism apex angle and the angle of incidence the optical axis makes 361 
with the prisms. In both cases the interferometer arms are assumed to be symmetric in the 362 
sense that they use the same gratings in equal and opposite order and identically oriented 363 
prisms. Section 4.3 considers field widening when the refractive index of the prisms is equal 364 
to 2 or greater when by proper choice of prism angles astigmatism can be eliminated.  365 

4.1.1 Field widening with prisms at minimum deviation 366 

Figure 7 shows the unfolded representation of one interferometer arm when field widening 367 
prisms are introduced into the arms of the interferometer. The optical axis along which both 368 
arms are assumed to have the same path is shown as the ray from point O on an input plane to 369 
point O6 on an output plane. Distances t0, t1 and t2 are measured along the axial ray between 370 
the points labeled Oi indicated on the figure. The condition of minimum deviation can be 371 

enforced by setting sin  = n sin(/2) where  is the angle of incidence of the axial ray at the 372 

first surface of the prism,  is the prism apex angle, and n its index of refraction. At minimum 373 

deviation the axial ray also exits the prism at the angle .  For simplicity, the effect of prism 374 
dispersion will be deferred to the end of this section. An off-axis ray enters the interferometer 375 

from plane P at point A. The ray enters at angles  and  with respect to the axis where  is 376 

measured in the plane of the figure and  is the out of plane angle, measured perpendicular to 377 
the figure (not shown in the figure).  The optical path, OP, between points A and C can be 378 
calculated by determining the sum of paths along the ray 379 

𝑂𝑃 = 𝐴𝐵1 + 𝑛𝐵1𝐵2 + 𝐵2𝐵3 − 2 𝑂3𝐵3
𝜎0

𝜎
sin 𝜃 + 𝐵3𝐵4 + 𝑛𝐵4𝐵5 + 𝐵5𝐶   (33) 380 



 381 

Fig. 7.  Unfolded representation of the field widened SHS.  Section 4.1 describes the case 382 
where the prisms are used at minimum deviation.  In this case the axial ray makes an angle of 383 

 = sin-1(n sin(/2)) with respect to the normal at points O1, O2, O4, and O5.  Section 4.2 384 
describes the general case where the angles on opposite sides of the prism are not necessarily 385 
equal. 386 

 387 

where O3B3 is measured in the plane of the figure and n is the index of refraction of the 388 
prisms. The term containing O3B3 is the path introduced by the diffraction grating. The optical 389 
path difference (OPD) between the two arms at point C can determined by taking the 390 
difference between the optical paths for the two arms: 391 
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𝑂𝑃𝐷 =  𝑂𝑃(𝑥, 𝑦, 𝑧, 𝛽, 𝜙, 𝜎, −𝜂, −𝛼, −𝜃, 𝑡0, 𝑡1, 𝑡2) − 𝑂𝑃(𝑥, 𝑦, 𝑧, 𝛽, 𝜙, 𝜎, 𝜂, 𝛼, 𝜃, 𝑡0, 𝑡1, 𝑡2)  (34) 392 

where the negative signs in the first term reverse the orientation of the prism and grating of 393 
the second arm with respect to the first. Using geometry to evaluate the line segments and 394 

expanding the OPD to fourth order in ,  and second order in   - o yields after much 395 
algebra: 396 

𝑂𝑃𝐷 ≈  −4𝑥
Δ𝜎

𝜎
tan 𝜃 + 2𝑥𝛽2 [tan 𝜃 − 2 tan 𝜂

𝑛2−1

𝑛2 cos2(𝛼/2)
] + 2𝑥𝜙2 [tan 𝜃 − 2 tan 𝜂

𝑛2−1

𝑛2 ] +397 

4 β
Δ𝜎

𝜎
tan 𝜃 [𝑡0 + 𝑡1

cos2 𝜂

𝑛 cos2(𝛼/2)
+ 𝑡2 + 𝑧] + 4𝑥 (

Δ𝜎

𝜎
)

2
(tan 𝜃)2 [tan 𝜃 − 2 tan 𝜂

𝑛2−1

𝑛2 cos2(𝛼/2)
] +398 

𝑥𝛼(𝛽2 + 𝜙2)2 𝑛2−1

2𝑛3          (35) 399 

The first term in this equation shows that the linear change in fringe frequency with 400 
wavenumber is identical to the non-field widened case described in section 2, resulting in a 401 
resolving power that is equal to the configuration without field-widening prisms. The effect of 402 

the 2 term is independent of input angles and can be determined in the wavenumber 403 
calibration of the instrument. It will be ignored in the following analysis. The localization 404 

plane of the fringes can be determined by choosing the distance z so that the term linear in  405 
is zero.  The result from the fourth term in equation 35 is: 406 

𝑧𝐿𝑜𝑐 = − [𝑡0 + 𝑡1
cos2 𝜂

𝑛 cos2(𝛼/2)
+ 𝑡2] ≈ − [𝑡0 +

𝑡1

𝑛
+ 𝑡2]                  (36) 407 

where the approximation is good to first order in prism angles. Equation 36 shows that the 408 
fringes are localized on a plane perpendicular to the optical axis at the paraxial image of the 409 
point where the gratings cross. This result is similar to the non-field widened case with the 410 
addition of the t1/n term that represents the geometric image of the gratings through a plane 411 
glass slab of thickness t1.  412 

The limiting field of view is determined by the second (2), third (2) and last terms [2 + 2]2  413 

in equation 35. The second and third terms differ by the term containing cos2(/2) which 414 
results from prism astigmatism due to the non-symmetric angles of incidence at the prisms. 415 
The last term that is quartic in angle is from spherical aberration due to the different thickness 416 
of the two prisms along all rays except the optical axis. Ignoring the last term for the moment, 417 

by appropriate choice of prism angle , (or its equivalent ) either, but not both, of the 418 

angular terms can be made zero. Setting the 2 term equal to zero will result in a field of view 419 
that is large in the plane of figure x (then limited by spherical aberration). The field of view in 420 

the  direction (perpendicular to the figure) will then be smaller; determined by the resulting 421 

nonzero coefficient of the 2 term. A field of view that is large in the  direction and small in 422 

the  direction can be obtained by choosing the prism angle so the coefficient of the 2  term 423 
is zero. A compromise between these two extremes is to choose the prism angle so the 424 
coefficients have equal magnitude and opposite signs. The limiting angles in the two 425 

directions is then the same, while a plot of path difference on the  -  plane has the saddle 426 
shape characteristic of astigmatism.   427 



Setting the angular coefficients equal in magnitude and of opposite sign results in the 428 
transcendental equation:   429 

tan 𝜃 = tan 𝜂
𝑛2−1

𝑛2

2𝑛2−sin2 𝜂

𝑛2−sin2 𝜂
        (37) 430 

where the condition for minimum deviation sin = n sin(/2) has been used to eliminate the 431 

angle .  Once equation 37 is solved for , the angle  can then be determined from the 432 
condition for minimum deviation. 433 

By substituting equation 37 into equation 35 the field of view at the gratings limited by 434 
astigmatism can be determined. Since the OPD trend with angle is quadratic in each direction 435 

and of opposite sign a plot of the OPD in the  -  plane has the saddle shape characteristic of 436 

astigmatism. It follows that the OPD change with angle is zero along the diagonals where  = 437 

±. The aperture defining the angles into the interferometer (A in figure 1) can then be made 438 
square rather than elliptical as in the non-field widened cases. Following the analysis in 439 
section 2 it can be shown that for a square field the maximum solid angle for the minimum 440 
deviation prism arrangement limited by astigmatism is given by: 441 

𝛽𝑚𝑎𝑥
2 = 𝜙𝑚𝑎𝑥

2 =
2

𝑅
{

1+cos2(𝛼/2)

1−cos2(𝛼/2)
}        (38) 442 

Where R is the resolving power.   443 

4.1.2 Effect of prism dispersion 444 

Because of prism dispersion the resolving power for the field widened system is slightly 445 
higher than given above. An analysis of prism dispersion indicates that to first order in index 446 

change, n, the optical path difference changes by –4x(n) where n is the change in index 447 
of refraction from the Littrow wavenumber.  Adding this term to the first term in equation 35 448 
the expression for the resolving power corrected for prism dispersion can be written as: 449 

𝑅 = 𝑅0 + 8𝛼𝑥𝑚𝑎𝑥𝜎2 𝛿𝑛

𝛿𝜎
= 𝑅0 − 8𝛼𝑥𝑚𝑎𝑥

𝛿𝑛

𝛿𝜆
       (39) 450 

where R0 is the resolving power without prism dispersion.  451 

4.1.3 Comparison of analytic expressions and exact ray trace. 452 

The two rows of table 3 show the input parameters used to compare the analytic and ZEMAX 453 
models for the configuration with the prisms at minimum deviation. The prism angle of 454 
incidence η was calculated using equation 37 after which the prism angle α was calculated 455 
using the condition for minimum deviation. The bottom three rows show the output 456 
parameters of resolving power, location of the fringe localization plane, and the maximum 457 
angles predicted by the theory and the ray trace. Note that the fringe localization plane zLoc is 458 
calculated from the same input plane for both cases and that prism dispersion has been 459 
included in the calculation of resolving power R.  460 

Table 3. Comparison of analytic expression with ray trace 461 



Parameter σ0 (cm-1) 
1/a 

(l/mm) 

2=-1 

(deg) 
prism n α (deg) η (deg) 

xmax 

(mm) 

Input 18,181.8 1000 15.96 
N-

Bk7 
1.51852 18.331 13.998 10 

Output R=σ/δσ zLoc (mm) max (rad) max (rad) 

Analytic 42940 -66.3 0.061 -0.061 

ZEMAX 42980 -66.1 0.061 -0.062 

 462 

Figure 8 is a plot of the OPD shift, measured in fringes, vs input angle for the configuration 463 
with prisms at minimum deviation. The sold black line is the prediction of the approximate 464 

analytic model in the  direction while the dashed black line is for the  direction when the 465 
prism angles are chosen to balance the astigmatism between the two directions as in equation 466 
37. The asterisks and squares are the corresponding values from the ZEMAX ray trace. The 467 
dotted lines show the angles at which the shift in fringes is ±0.5 from the ZEMAX model. 468 
Note as mentioned earlier, the aperture defining the angles into the interferometer (A in figure 469 
1) can be made square rather than elliptical as in the non-field widened cases. The throughput 470 
gain associated with this configuration over a non-field widened interferometer at this 471 
resolving power is then (2*0.062)*(2*0.061)/(2π/42980) ≈ 100 where equation 19 has been 472 
used for the throughput without field widening.  473 

 474 

 475 

Fig. 8. Plot of the OPD vs input angle for the field widened configuration with the prisms at 476 
minimum deviation.   477 

4.2  Field widening for arbitrary prism incident angle. 478 



 By allowing an angle of incidence at the prism other than minimum deviation the field of 479 
view of the interferometer can be made larger than predicted by equation 38. The analysis 480 

follows that given in section 4.1 except the condition sin = n sin(/2) is no longer used with 481 

the result that  and  are independent variables. If the prism index of refraction is larger than 482 
2, it will be shown that the terms quadratic in off-axis angle can be set to zero (zero 483 
astigmatism). This means that the lowest order remaining terms are higher than second order 484 
in off-axis angle. To simplify the results but retain the important features the OPD expression 485 

(equation 34) will be expanded in variables  and  in addition to , , and  to fifth order.   486 

4.2.1 Term-by-term analysis of OPD 487 

Expanding equation 34 to fifth order in the variables , , , , and  and grouping them in 488 

terms of , , and  results in a series of six terms analogous to those in equation 35. For 489 

clarity, each of the six terms will be considered separately. The first term, linear in  only, 490 
determines the resolving power and is 491 

Δ𝜎

𝜎
4𝑥 tan 𝜃 { 1 −

𝛼2

2
(𝑛2 − 1) +

𝜂𝛼

𝑛
(𝑛2 − 1) − 𝛼4 (

𝑛4

8
+

𝑛2

12
−

5

24
) + 𝜂𝛼3 (

𝑛3

2
−

𝑛

3
−

5

6𝑛
) +492 

𝜂2𝛼2 (
1−𝑛4

𝑛2 ) + 𝜂3𝛼 (
5𝑛

6
−

1

3𝑛
−

1

2𝑛3)}       (40) 493 

Although this expression appears complicated, its first term is equal the first term in equation 494 
35, furthermore it can be shown that the if the prism angles are not included in the expansion 495 
the exact expression, including all terms is given by  496 

Δ𝜎

𝜎
4𝑥 tan 𝜃 [

cos 𝜂1 cos 𝜂3

cos 𝜂 cos 𝜂2
]         (41) 497 

where 1 is the angle of refraction at O1, 2 is the angle of incidence at O2, and 3 is the angle 498 
of refraction at O2 in figure 7. The term in square brackets can be interpreted as the 499 
magnification of the aperture in the x dimension introduced by the prism (which is 1 at 500 
minimum deviation).  The resolving power is changed slightly from earlier versions due to 501 
the magnification introduced by the prism resulting in a beam width at the grating that is 502 
slightly different than the beam width exiting the interferometer.   503 

The next term of interest in the expansion is the (/) term that serves to localize the 504 
fringes (cf. fourth term in equation 35).  This term is equal to:  505 

𝛽
Δ𝜎

𝜎
2 tan 𝜃 {𝑧[−2 + (𝑛2 − 1)(𝛼2 − 2𝜂𝛼/𝑛)] + 𝑡0[−2 + (𝑛2 − 1)(𝛼2 − 2𝜂𝛼/𝑛)] +506 

𝑡1

𝑛
[−2 + (𝑛2 − 1) (𝛼2 −

2𝜂𝛼

𝑛
+ 2𝜂2/𝑛2)] + 𝑡2[[−2 + (𝑛2 − 1)(𝛼2 − 2𝜂𝛼/𝑛)]]} (42) 507 

Setting this term to zero and solving for z serves to locate the fringe localization plane.  508 
Expanding the result to first order in prism variables gives: 509 

𝑧𝐿𝑜𝑐 = − [𝑡0 +
𝑡1

𝑛
+ 𝑡2]        (43) 510 



which is the same as the righthand side of equation 36. Since equation 42 is independent of x 511 
the fringes are localized on a plane perpendicular to the gratings which is to first order in 512 
prism angles equal to the geometrical image of the gratings. 513 

We will now turn our attention to the higher order terms in off axis angle. The terms of 514 

immediate interest are the quadratic and quartic terms in  and  (cf. the second, third and last 515 
term in equation 35). As the lowest terms in the expansion, they determine to the maximum 516 
field of view. For the arbitrary prism angle of incidence these terms are given by: 517 

𝛽2𝑥{−2 tan 𝜃 + 2𝛼
𝑛2−1

𝑛
+ 2𝛼𝜂 tan 𝜃

𝑛2−1

𝑛
− 𝛼2 tan 𝜃 (𝑛2 − 1) + 𝛼𝜂2(𝑛2 − 1)

5𝑛2+3

𝑛3 −518 

2𝛼2𝜂(𝑛2 − 1)
3𝑛2+1

𝑛2 + 2𝛼3(𝑛2 − 1)
3𝑛2+1

3𝑛
}       (44) 519 

𝜙2𝑥{−2 tan 𝜃 + 2𝛼
𝑛2−1

𝑛
− 2𝛼𝜂 tan 𝜃

𝑛2−1

𝑛
+ 𝛼2 tan 𝜃 (𝑛2 − 1) + 𝛼𝜂2(𝑛2 − 1)

𝑛2+1

𝑛3 −520 

2𝛼2𝜂
𝑛2−1

𝑛2 + 2𝛼3 𝑛2−1

3𝑛
}        (45) 521 

[𝛽2 + 𝜙2]2𝑥𝛼
𝑛2−1

2𝑛3          (46) 522 

Where equations 44 and 45 are different due to prism astigmatism.  Following the discussion 523 
in section 4.1 by ignoring the spherical aberration term (equation 46), we set the expressions 524 
in curly brackets from equations 44 and 45 equal in magnitude but opposite in sign to obtain a 525 
symmetric field of view. The result is, after some algebra: 526 

tan 𝜃 = 𝛼
𝑛2−1

𝑛
[1 + (3𝑛2 + 2)

𝑛2𝛼2−3𝑛𝛼𝜂+3𝜂2

6𝑛2 ]      (47) 527 

Using equation 47 to eliminate tan in either equations 44 or 45 gives the resulting angular 528 
quadratic term as: 529 

𝛽2 or 𝜙2 →  ±𝛼𝑥
𝑛2−1

𝑛3
[𝑛2𝛼2 − 𝑛𝛼𝜂(𝑛2 + 2) + 𝜂2(2𝑛2 + 1)]    (48) 530 

Equations 47 and 48 are a general set which allow the calculation of both the prism angle  531 

and angle of incidence at the prism .  By minimizing the magnitude of equation 48 as a 532 

function of , the maximum solid angle is obtained. Equation 47 can then be used to 533 
determine the optimum prism angle.   Next, we treat two separate cases depending on whether 534 
the index of the prism is greater or less than 2.   535 

4.2.2 Analysis of prism astigmatism for n < 2. 536 

In spectral regions where the index of refraction of the prism material is less than 2, the FOV 537 

limited by astigmatism is obtained by minimizing equation 48 as a function of  which results 538 
in the condition:   539 

𝜂 =
𝑛𝛼

2

𝑛2+2

2𝑛2+1
  (n<2) minimum astigmatism       (49) 540 

Substituting this into equation 48 gives the maximum off-axis angle 541 



𝛽𝑚𝑎𝑥
2 = 𝜙𝑚𝑎𝑥

2 = 16
2𝑛2+1

𝑅𝛼2𝑛2(4−𝑛2)
        (50) 542 

Where R is the resolving power and the first term in equation 47 and equation 17 for 1 = -2 543 
have been used.  This expression leads to a gain in solid angle compared to an SHS without 544 
field widening (or a single channel Fabry-Perot or Michelson) of: 545 

𝐺 = 8
2𝑛2+1

𝛼2𝑛2(4−𝑛2)
          (51) 546 

For n = 1.5 equation 51 gives a value of gain that is  1.4 times larger than the minimum 547 
deviation configuration discussed in section 4.1. Due to the difference term in the 548 
denominator, equation 51 predicts that the closer the index of refraction is to 2, the larger the 549 
gain compared with a non-field widened system.   550 

Substituting equation 49 into equation 47 gives an expression for the optimum prism angle in 551 
terms of the index and grating angle.  The equation is: 552 

tan 𝜃 = 𝛼
𝑛2−1

𝑛
[1 + 𝛼2(3𝑛2 + 2)

7𝑛4−2𝑛2+4

24(2𝑛2+1)2]      (52) 553 

In designing an instrument of resolving power R and grating aperture W, the equation R = 554 

4Wσsin could be used to determine the grating angle . Equation 52 could then be used to 555 

determine the prism angle  and equation 49 could be used to determine , the angle of 556 
incidence of the axial ray on the prism. 557 

4.2.3 Comparison with exact ray trace 558 

As was done for the previous configurations, the formulas derived in section 4.2.2 were 559 
compared with and exact ray trace. The results are shown in Table 4 and figure 9. The same 560 
grating aperture (10 mm), groove density (1000 l/mm) and wavenumber (18,181.8 cm-1 = 550 561 
nm) as were used in section 4.1.2 were modeled for ease of comparison with the case with the 562 
prisms at minimum deviation. Here the focus is on the change in OPD with input angle for the 563 
two cases. The prism angle of incidence η was obtained from equation 49 and the prism angle 564 
α from equation 52. For this case there is a greater difference between the maximum 565 
allowable off-axis angles predicted by the analytic method and the exact ray trace, likely due 566 
to the small angle approximations for the prism angles made in the Taylor expansions. Taking 567 
the ZEMAX values as limiting the field of view the throughput gain associated with this case 568 
relative to a configuration without field widening is (2*0.064)*(2*0.096)/(2π/42270) ≈ 165, 569 
which is somewhat larger than with minimum deviation prisms. 570 

 571 

Table 4. Comparison of analytic expression with ray trace for arbitrary prism angle of 572 
incidence. 573 

 574 



Parameter σ0 (cm-1) 
1/a 

(l/mm) 

2=-1 

(deg) 
prism n α (deg) η (deg) xmax (mm) 

Input 18,181.8 1000 15.96 N-Bk7 
1.518

52 
18.256 10.635 10 

Output R=σ/δσ zLoc (mm) max (rad) max (rad) 

Analytic 42940 -66.4 0.074 -0.074 

ZEMAX 42270 -66.6 0.064 -0.096 

 575 

 576 

 577 

Fig. 9. Plot of OPD vs. input angle for arbitrary prism angle of incidence. Solid black the 578 

analytic prediction in the  direction while dashed black is in the  direction. The asterisks 579 
and squares are the limits provided by the ZEMAX model.  580 

4.3.1 Evaluation of prism angles for index of refraction greater than 2.   581 

In spectral regions where prism materials are available that have an index of refraction of 2 or 582 
greater, the factor in brackets in equation 48 can be set to zero by the condition: 583 

𝜂 =
𝑛𝛼

2
[𝑛2 + 2 ±

𝑛√𝑛2−4

2𝑛2+1
]         (53) 584 

This relationship along with equation 47 then provide a set of equations for both  and  for 585 
which the quadratic term in off axis angles is zero. The leading non-zero term is then from 586 
spherical aberration (equation 46) and leads to a predicted maximum off axis angle given by 587 

𝛽𝑚𝑎𝑥
4 = 𝜙𝑚𝑎𝑥

4 =
8𝑛2

𝑅
         (54) 588 



where R is the resolving power.   589 

4.3.2 Comparison of analytic method and exact ray trace for high index prisms 590 

Table 5 and Figure 10 compare the approximate analytic prediction with the exact ZEMAX 591 
ray trace for an interferometer with high index ZnS prisms. The combination of equations 53 592 
and 47 were used to determine the prism angles. Figure 8 shows the lines (analytic) and 593 
points (ZEMAX) with the same, rather than opposite curvature which indicates that prism 594 
astigmatism has been eliminated, however the analytic method predicts a larger field of view. 595 
Even so the ZEMAX ray trace indicates a gain in through put of (π*0.134*0.135)/(2π/46750) 596 
≈ 420 over the Michelson configuration without field widening prisms. For this calculation an 597 
elliptical limit on the input angles was used since the OPD change with input angle is not an 598 
astigmatic saddle but has the same sign in both directions.   599 

Table 5. Comparison of analytic expression with ray trace for high index prisms. 600 

Parameter σ0 (cm-1) 
1/a 

(l/mm) 

2=-1 

(deg) 
prism n 

α 

(deg) 

η 

(deg) 

xmax 

(mm) 

Input 18,181.8 1000 15.96 ZnS 2.38616 8.054 3.559 10 

Output R=σ/δσ zLoc (mm) max (rad) max (rad) 

Analytic 47790 -64.2 0.182 0.182 

ZEMAX 46570 -64.8 0.134 0.135 

 601 

 602 

Fig. 10. Plot of analytic prediction (black line) with ZEMAX ray trace (symbols) for prisms 603 
with index of refraction greater than 2. Prism astigmatism has been eliminated. Although the 604 
analytic method predicts a larger field of view the field of view of the ray trace results in a 605 
larger throughput than prisms with index of refraction less than 2.   606 



5. Summary  607 

Multiple spatial heterodyne spectrometer configurations have been considered with an 608 
emphasis on deriving approximate expressions for instrument parameters, based on the 609 
expansion of the OPD for small angles. Formulas were derived for the resolving power, fringe 610 
localization plane, and admissible off-axis rays when viewing diffuse sources for each 611 
configuration. These were then compared with exact ray traces of example interferometers for 612 
each configuration.  613 

For the basic Michelson and all-reflection configurations that do not have field widening 614 
prisms discussed in sections 2 and 3, the approximate formulas were found to accurately 615 
represent the exact results so that further modeling is likely not necessary when designing 616 
these instruments. Because they involve much larger angles, the approximate formulas 617 
derived for the configurations with field widening prisms in section 4 were not as accurate 618 
when compared to the numeric ray tracing results. The formulas derived in section 4 should 619 
therefore be viewed as starting points for further optimization using ray tracing software such 620 
as ZEMAX or by numerical calculation of the OPD. Note also that there are often 621 
considerations other than maximizing the throughput when designing field widened 622 
interferometers. For example, for stability the SHIMMER [2] and MIGHTI [9] 623 
interferometers were both monolithic designs using fixed spacers to hold the prisms and 624 
gratings to the beam splitter. To simplify the alignment of the monolith, the grating surface 625 
was made parallel to the prism surface closest to it which made the spacer between the prism 626 
and grating plane parallel rather than wedged resulting in a small decrease in the maximum 627 
field of view in favor of easier alignment. Furthermore, the MIGHTI interferometer utilized 628 
multiple orders of the gratings to simultaneously observe three separate spectral bands. Due to 629 
different indices of refraction for the three different bands, the prism angles could not be 630 
optimized simultaneously for all bands so a compromise was struck that slightly reduced the 631 
maximum angles at the interferometer. 632 
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